Advanced Learning-Based Coding Tools for ECM:
Intra Prediction and In-Loop Filtering

Yanchen Zhao!, Jiaye Fu?, Zhaoyu Li!, Qizhe Wang', Zhimeng Huang!,
Jiaqi Zhang', Chuanmin Jia® and Siwei Ma'
1School of Computer Science, Peking University, China
2School of Electronic and Computer Engineering, Peking University, China
3Wangxuan Institute of Computer Technology, Peking University, China
{yczhao, jyfu, zylee, qzwang} @stu.pku.edu.cn, {zmhuang, jqzhang, cmjia, swma}@pku.edu.cn

Abstract—Neural Network (NN)-based video coding technolo-
gies have emerged as a promising alternative to traditional
methods, demonstrating significant advantages amidst the rapid
advancements in video coding technology. This paper presents a
hybrid video coding method based on the Enhanced Compres-
sion Model (ECM) developed by the Joint Video Exploration
Team (JVET). We integrate two NN-based coding tools into the
framework. Specifically, the proposed NN-based Intra Prediction
(NNIP) method effectively models the nonlinear relationship
between neighboring contextual information and the block to
be predicted. The NN-based In-Loop Filtering (NNILF) method
adaptively filters the luminance and chrominance components
across various quality levels. Experimental results show that
the NNIP and NNILF methods achieve 0.56% and 4.14% BD-
rate savings for YCbCr components under the All Intra (AI)
configuration compared to ECM-14.0. Under the Random Access
(RA) configuration, the proposed method can achieve a 2.41%
BD-rate saving for YCbCr components.

Index Terms—Video coding, intra prediction, in-loop filtering,
learning-based

I. INTRODUCTION

In recent years, video has gradually become the primary
medium for information dissemination. With the development
of High-Definition (HD) and Ultra-High-Definition (UHD)
video, the volume of video data has been increasing exponen-
tially, making the need for advanced video coding techniques
more urgent than ever. Versatile Video Coding (VVC), intro-
duced by the Joint Video Experts Team (JVET) in 2021, is the
latest generation of video coding standards [1]. Compared to
its predecessor, High Efficiency Video Coding (HEVC), VVC
achieves a 50% Bjgntegaard Delta rate (BD-rate) saving with
the comparative subjective video quality, while also supporting
more types of media content and emerging applications [2].
In addition to VVC, JVET introduced a Neural Network
Video Coding (NNVC) reference software in 2021 and Neural
Compression Software (NCS) to explore how neural network-
based tools can enhance coding performance. Furthermore,
the Enhanced Compression Model (ECM) was introduced,
incorporating various new tools to further improve video
coding efficiency [3]. The initial version of ECM achieves a

This work was supported in part by National Natural Science Foundation
of China 62025101, 62031013, 62371008, in part by New Cornerstone
Science Foundation through the XPLORER PRIZE and in part by the High
Performance Computing Platform of Peking University.

12% BD-rate saving in the Random Access (RA) configuration
compared with VTM-10.0, while the first version of NCS
achieves a 9% BD-rate saving [4]. As of August 2024, the
latest version, ECM-14.0, has achieved a coding performance
improvement of over 24% compared to VITM-11.0 under the
RA configuration, while NNVC-8.0 has achieved over 14%
BD-rate saving under the RA configuration [5], [6].

Beyond standards development [7], neural network-based
coding tools are also being actively explored [8], [9]. In intra
prediction, early neural network-based tools primarily used
the Convolutional Neural Network (CNN) based method to
predict coding blocks based on the reconstructed neighboring
regions [10]. In recent years, with the rise of attention mech-
anisms, attention-based intra prediction has shown significant
potential [11]. Temporal information plays a crucial role in
video coding, and many neural network-based inter prediction
methods have achieved high performance by leveraging spatio-
temporal reference information across frames [12], [13]. In-
loop filtering is also an important part of the video coding
framework, and the introduction of neural network-based filter-
ing methods has significantly improved coding efficiency [14]-
[16]. Currently, the evolution of ECM has revealed diminishing
returns in intra prediction tool improvements, primarily due
to the inefficiency of traditional coding tools. Therefore,
the incorporation of deep learning coding tools holds great
promise for the development of next-generation video coding
technologies.

Based on the advanced traditional coding reference platform
ECM [17], this paper proposes a neural network-based video
coding method, which incorporates two major neural network-
based coding tools. This work represents a significant inves-
tigation into next-generation video coding from an artificial
intelligence perspective. The main contributions of our work
are summarized as follows:

e« We propose a Neural Network-based Intra Prediction
(NNIP) method into the intra prediction module of ECM,
which provides an additional intra prediction mode. Com-
pared with traditional methods, this method can generate
non-linear and naturally transitional textures.

e We propose a Neural Network-based In-Loop Filtering
(NNILF) method. This method is capable of filtering both
luminance and chrominance components simultaneously,



,
XO m; wxh 4x4 8x4 16x4 32x4 8x8 16x8 16x16 32x32 5
n H 0 0
| m, 12 20 36 68 24 40 40 80 55 § a  aQ
Y h ' o el
m, 4 4 4 4 8 8 8 16 !y % _R_9_ 9
ny | Xy b 1A D T T T A
w n, 8 8 8 8 16 16 32 64 =1 5 > >
H 15) 15) g g
' O o S8 S Q
n, 4 4 4 4 8 8 8 16 i o O 2 °
n, ; g 2.
------------------------------------------------------------------------------------ ] E_ouo_o_ = > Y
H §STETE "3
\ =]
1 15 ~
50 =) =) =) ! g g I & )
Xo g = = = o , 2 £ = =
E_uU_R_u_&_uv_R_ou_§ : 2 R 9 9
g R »mT Rk A R »m T R g - Y  Xg— @ - - S - rii
=] i - - Q H > > > >
X | g ki g 8 | 5 & ¢ &
E Q Q @) o]

Fig. 1. Tllustration of the fully connected architecture and convolutional architecture. The fully connected network is used for predicting small blocks, and
the convolutional network is used for predicting large blocks. For each prediction area Y of varying sizes, the required reference pixel area size also differs

accordingly.

ResBlock
|
ResBlock
|
ResBlock
A
\IJ
Conv 3x3

Pixel unshuffle
1
Conv 3x3
1
RelLU

Concatenate
1

H_/

N ResBlocks

% 1

= ! ) %)
SR ! & D & X
= 1 o1 151
3 - = . z-3- z —<—
~ o) ! ~

) 1 15 5

2 ! O @)

: ResBlock

Fig. 2. Network architecture of in-loop filtering for luminance and chrominance components.

and can also achieve adaptive filtering by inputting the
Quantization Parameter (QP) of the current frame.

II. PROPOSED METHOD
A. Neural Network-based Intra Prediction

Current intra prediction methods are mainly based on an-
gular projection models. These models can generate linear
textures but are limited when it comes to handling com-
plex textures and producing natural transitions. The reference
boundary pixels are prone to noise, which can result in pre-
diction errors. Additionally, over 60 angular prediction modes
require approximately 6 bits to represent, increasing bitstream
overhead. On the other hand, neural networks have a large
number of learnable parameters and a strong nonlinear fitting
capability. This allows them to capture the characteristics of
reference pixels and to generate transition textures that are
more natural and complex. Furthermore, neural networks can
generate diverse textures using a single prediction model,
helping to reduce bit cost.

As shown in Fig. 1, we use two different network architec-
tures to predict blocks of varying sizes. Xy and X; represent
the available reference pixel regions for the current block to
be predicted, while Y represents the block to be predicted.
The entire prediction process can be viewed as an end-to-
end mapping from X, and X; to Y. Specifically, for smaller
blocks, the number of pixels to be predicted is limited. In
this case, using a fully connected network to map reference
pixels to each predicted pixel achieves a good balance between
complexity and model performance. For larger blocks, there
are many pixels to predict. A fully connected network requires

flattening the reference pixel region into a one-dimensional
vector, which disrupts the local correlations between pixels.
In contrast, convolutional networks are more adept at extract-
ing local features and are thus better suited for predicting
larger blocks. In this architecture, features are independently
extracted by two branches and then concatenated to generate
the predicted block. As shown in Fig. 1, we have trained a total
of 8 sets of network models for 12 different block sizes. The
values of mj, ma, n1, and ne, as well as the corresponding
block sizes, are shown in the figure. For symmetric blocks,
such as 4 x 8 and 8 x 4, we use the same fully connected
network. For larger blocks, such as 16 x 16 and 32 x 32, we
use the convolutional neural networks.

B. Neural Network-based In-Loop Filtering

To improve the inference efficiency of the in-loop filtering
process in the traditional hybrid coding framework, we pro-
pose a network structure that simultaneously processes both
luminance and chrominance components, as shown in Fig. 2.
The model also takes Quantization Parameter (QP) as an addi-
tional input, allowing a single model to handle filtering tasks
across multiple bitrate points. Specifically, YCbCr components
are fed into the network at their original resolution. The
chrominance components are first upsampled using nearest-
neighbor interpolation to match the resolution of the luminance
component. These are then concatenated with the luminance
component and the QP, and passed through a pixel unshuffle
layer to reduce the size of the feature maps for more efficient
computation. A convolutional layer followed by a ReLU
activation function performs initial feature extraction.



TABLE I
CODING PERFORMANCE OF NNIP
(BD-RATES AND RELATIVE RUNTIMES FOR ECM-14.0 CTC).

TABLE II
CODING PERFORMANCE OF NNILF
(BD-RATES AND RELATIVE RUNTIMES FOR ECM-14.0 CTC).

Class All Intra Class All Intra
. Y Cb Cr YCbCr EncT  DecT . Y Cb Cr YCbCr  EncT DecT

Al -0.58% -048% -0.51% -0.56% 445%  778% Al -191% -637%  -7.06% -3.10% 114% 17502%
A2 -033% -025% -022% -031% 446% 645% A2 220% -831% -8.11% -3.70% 108% 12741%
B -0.46% -023% -0.17% -040% 487%  765% B 2.16% -827%  -71.80%  -3.63% 109%  17890%
C -0.79% -050% -0.65% -0.74% 440% 1019% C 2.95% -9.60% -1021% -4.69% 105% 13642%
D -0.84% -0.64% -0.76% -081% 438% 1171% D -3.40% -981% -11.02% -5.16% 105% 12512%
E -091% -041% -0.63% -0.81% 494%  849% E -420% -955% -11.23% -5.75% 114% 20871%
F -0.50% -036% -0.27% -046% 424%  557% F -1.62% -333% -2.06% -1.89% 105% 15672%
TGM -0.04% 0.00% -0.04% -0.03% 395% 224% TGM -0.66% -0.01% -0.03% -0.50% 105% 14991%
Overall | -0.61% -0.37% -0.42% -0.56% 463% 809% Overall | -2.64% -847% -8.83% -414% 110% 16272%

The extracted features are progressively enhanced through
stacked residual blocks, followed by another convolutional
layer and ReLU for feature reconstruction. Finally, a pixel
shuffle layer restores the output to the original luminance res-
olution, while the chrominance components are downsampled
using bilinear interpolation. This design allows the network
to enhance both luminance and chrominance components in
a single inference pass. When utilizing GPU resources for
inference, this method effectively reduces the data transfer
latency between system memory and GPU memory, com-
pared to performing separate inferences for luminance and
chrominance or relying on third-party upsampling functions.
Additionally, compared to methods that split the luminance
component into four parts and concatenate it with the chromi-
nance components, our approach better preserves the spatial
continuity of the luminance component, enabling the model to
more effectively learn the correlations between the luminance
and chroma components.

C. Implementation in ECM

We conduct experiments on the next-generation video codec
Enhanced Compression Model (ECM). We have integrated
the two proposed intelligent encoding tools into the latest
reference software ECM-14.0 [18]. Specifically, NNIP, as an
independent intra prediction coding tool, has a separate Coding
Unit (CU) level flag. Currently, in order to ensure that each
coding block has locally optimal transformation parameters,
repetitive calculations are performed for the same prediction
mode at the encoder side. However, the calculation of neural
network can be extremely time-consuming. Therefore, the
proposed method introduces an additional cache buffer at
the encoder side to store the prediction results of NNIP,
thereby avoiding the redundancy in time complexity caused
by repetitive neural network calculations.

We integrate the neural network-based in-loop filtering tool
after the traditional deblocking filter to efficiently combine it
with conventional filtering tools. During in-loop filtering of
the reconstructed frame, the proposed approach applies block-
by-block filtering to each Coding Tree Unit (CTU) of the
current reconstructed frame, then calculates the Mean Square
Error (MSE) between the CTU block before and after filtering
and the original block. We design additional syntax elements
at both the frame level and CTU level. The frame level is
represented by 3 bits, indicating the activation status of the

filtering tool for the Y, Cb, and Cr components. When frame-
level filtering is enabled, additional flags are transmitted to
further indicate the activation status of the filtering tool for
each CTU block, enabling more precise filtering.

III. EXPERIMENTAL RESULTS

A. Training Process

We use DIV2K [19], Flickr2K [19], and BVI-DVC [20]
as the training datasets. We convert the original PNG for-
mat images and MP4 format videos into 10-bit YUV420
format videos by FFmpeg. For the training of the intra
prediction models, we use ECM-14.0 to compress the DIV2K
and Flickr2K datasets at four different Quantization Parame-
ters (QPs) (22, 27, 32, 37) under All Intra (AI) configuration.
Other parameters are the same as Joint Video Exploration
Team (JVET) Common Test Condition (CTC) [21]. Then we
export the reference pixels of eight different block sizes along
with the original values of these blocks to form the training
set. The validation set consists of the last 10% images from
these two datasets. Due to the large amount of data exported
from blocks of different sizes, we set the batch size to 1000
and the learning rate to 3e-5 when training the model. Each
model is trained for 90 epochs, and the learning rate is reduced
to one-third of its original value every 30 epochs. Adam [22]
is used as the optimizer.

For the training of the filtering model, we conduct the
training in two stages. The first stage involves training the
model under the AI configuration, using the DIV2K and
Flickr2K datasets. We switch the Luma Mapping with Chroma
Scaling (LMCS), Deblocking Filter (DBF), Sample Adaptive
Offset (SAO), Adaptive Loop Filter (ALF), and Bilateral Filter
(BIF) off during the compression process. We compress these
datasets at four different QPs (22, 27, 32, 37) using ECM-
14.0 under AI configuration. We also export the QP for each
frame as an additional input to the model. The input size of
the model is 144 x 144, with a batch size set to 32 and an
initial learning rate of le-4. The model is trained for a total
of 60 epochs, and the learning rate is reduced to one-third of
its original value every 20 epochs. In the second stage, we
compress the training set under the RA configuration using
the BVI-DVC dataset, which leads to some performance loss
in the model. We encode the first 64 frames of each video
under RA configuration with a Group of Pictures (GOP) size
of 32. We extract all inter-frames from the dataset to form



TABLE III
CODING PERFORMANCE OF NNIP AND NNILF
(BD-RATES AND RELATIVE RUNTIMES FOR ECM-14.0 CTC).

Class Sequences All Intra Random Access
Y Cb Cr YCbCr  EncT DecT Y Cb Cr YCbCr  EncT DecT

Tango 288% -11.96% -13.62% -536% 443% 20708% | -1.84% -9.69%  -7.22% -3.49% 125% 21786%
Al FoodMarket -3.06%  -795%  -8.32% -4.33% 442% 19234% | -1.23%  -539%  -4.20% -2.12% 139% 26143%
CampFire -1.31% -023%  -0.54% -1.08% 425% 16453% | -0.65% -096%  -0.09% -0.62% 105% 24855%
CatRobot 335% -11.13% -13.26% -5.56% 443% 14141% | -3.02% -824%  -796% -429% 116% 22517%

A2 DaylightRoad 2.10% -1411% -11.37% -476% 512% 13743% - - - - - -
ParkRunning 2.00% -037% -043% -1.60% 367% 14080% | -2.99% -1.26%  -2.19% -2.67% 110% 15109%
MarketPlace 2.12% 934%  -7.12% -3.65% 500% 24761% | -2.14% -13.89% -10.40% -4.64% 113% 16421%
RitualDance -3.67% -854% -10.82% -517% 493% 25044% | -2.78%  -6.57%  -71.02% -3.78% 104% 20419%
B Cactus 2.68% -128%  -087% -2.28% 481% 17380% | -2.02% -1.90% 0.06% -1.74% 114% 21413%
BasketballDrive -2.60% -12.70% -10.52% -4.85% 498% 19116% | -1.76% -6.36%  -5.35% -2.79% 107% 18735%
BQTerrace -1.75% -10.39% -10.40% -391% 511% 12564% | -2.24%  -9.67% -10.59% -4.21% 120% 21944%
BasketballDrill 472% -13.08% -12.47% -6.73% 467% 14739% | -1.45% -3.86%  -2.30% -1.85% 110% 19118%
C BQMall 442% -1093% -1243% -6.23% 465% 16680% | -2.13%  -8.44%  -1.50% -3.59% 102% 15837%
PartyScene -3.16% -857%  -796% -443% 436% 9619% | -1.86% -6.22%  -4.90% -2.78% 102% 11735%
RaceHorses 229%  -7.78% -10.67% -4.02% 443% 18852% | -1.06% -7.87% -10.03% -3.03% 104% 10335%
BasketballPass -4.63% -10.57% -10.64% -6.12% 444% 15920% | -2.41% -7.50% -7.94% -3.74% 110% 15275%
D BQSquare -4.66% -71.77% -13.09% -6.10% 451% 10660% | -4.42% -6.70%  -9.01% -528% 108% 15070%
BlowingBubbles -3.53% -9.89%  -872% -497% 415% 11944% | -1.60% -7.53% -6.27% -2.93% 107% 10746%
RaceHorses 3.71% -13.33% -1473% -6.29% 422% 16120% | -1.75% -10.58% -10.89% -4.00% 105% 13289%

FourPeople -536% -10.10% -10.33% -6.58% 518% 19580% - - - - - -

E Johnny -480% -994% -1475% -6.68% S507% 22616% - - - - - -

KristenAndSara -4.62% -9.87% -10.86% -6.06% 496% 23273% - - - - - -
BasketballDrillText | -4.38%  -5.64%  -0.08% -4.00% 417% 13096% | -1.43% -3.71% 0.61% -1.46% 139% 31837%
F ArenaOfValor -3.09% -880%  -927% -4.58% 421% 15476% | -1.25%  -4.66%  -4.61% -2.09% 132% 24980%
SlideEditing -0.14%  -0.18% 021% -0.10% 459% 16257% | -0.07% -0.52%  -0.05% -0.13% 150% 87807%
SlideShow -0.60%  0.01% -042%  -0.50% 456% 27330% | -0.08% -1.60% -1.55% -0.45% 145% 70996%
FlyingGraphic -1.48%  -0.14%  -0.19% -1.14% 386% 13385% | -0.53% -039% -0.82% -0.55% 104% 16742%
TGM Desktop 0.10% 0.15% 0.04% 0.10% 404% 20125% | -0.16% -0.13%  -029% -0.17% 152% 63910%
Console -1.18%  -0.10%  -0.09% -091% 342% 18556% | -0.09%  0.07% 0.10%  -0.05% 124% 44914%
ChineseEditing -0.29%  0.04% -0.05% -022% 448% 12650% | -0.27%  0.12% 0.15% -0.17% 143% 85847%
Overall -3.16% -8.79%  -9.26% -4.63% 468% 17398% | -1.59% -5.13% -4.63% -2.41% 119% 28763%

the training set. Additionally, unlike the first stage, the initial
learning rate in the second stage is set to le-5, while all other
parameters remain the same.

B. Coding Gain Analysis

The proposed method is integrated into ECM-14.0. Simula-
tions are conducted following the JVET CTC and evaluation
procedures for enhanced compression tool testing. We test
four QPs (22, 27, 32, 37), and the comparison of coding
efficiency is measured by BD-rate. As shown in Tab. I, the
NNIP method achieves average BD-rate savings of 0.61%,
0.37%, and 0.42% under the Al configuration, compared to
ECM-14.0. Tab. II shows that the NNILF method provides
average BD-rate savings of 2.64%, 8.47%, and 8.83% under
Al configuration. Tab. III summarizes the overall performance
comparison, where the combined methods achieve 3.16%,
8.79%, and 9.26% BD-rate savings on average under Al
configuration, and 1.59%, 5.13%, and 4.63% under RA con-
figuration. The YCbCr BD-Rate is calculated by averaging the
BD-Rate of Y, Cb, and Cr components with weights 6:1:1. It
is worth noting that the models are not trained with screen
content-related data, resulting in suboptimal performance on
screen content, such as Class F and Class TGM.

C. Coding Complexity Analysis

For the NNIP method, the number of models’ parameters
ranges from 1.5M to 4M. The computational complexity of

the fully connected networks varies from 5 kilo Multiply-
Accumulate operations (kMACs) per pixel to 20 kMACs
per pixel. The computational complexity of the convolutional
neural networks is around 200 kKMACs per pixel. When tested
under the AI configuration, we find that the computational
complexity mainly comes from the two convolutional networks
applied to large blocks of 16 x 16 and 32 x 32 sizes. Therefore,
in the RA configuration, we disable these two convolutional
networks to minimize the encoding and decoding complexity
under RA. For the NNILF method, the model is primarily com-
posed of 20 stacked residual blocks, with each convolutional
layer having 32 channels. The total number of parameters in
the network is 376.9K, and the computational complexity is
93.9 kKMACs per pixel. None of the proposed neural network
models are quantized, and all are inferred using the CPU,
which leads to higher encoding and decoding complexity.

IV. CONCLUSION

In this paper, we integrate Neural Network-based Intra
Prediction (NNIP) and Neural Network-based In-loop Filtering
(NNILF) into ECM-14.0. Experimental results show that these
tools can achieve 4.63% BD-Rate savings for YCbCr compo-
nents under the All Intra (AI) configuration and 2.41% under
the Random Access (RA) configuration. Neural network-
based coding tools possess substantial potential for future
development. In the future, these tools will effectively support
the development of next-generation video coding standards.



REFERENCES

[1]1 B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-R.

Ohm, “Overview of the Versatile Video Coding (VVC) standard and

its applications,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 31, no. 10, pp. 3736-3764, 2021.

G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the

High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649—

1668, 2012.

[3] Y.-J. Chang, C.-C. Chen, J. Chen, J. Dong, H. E. Egilmez, N. Hu,
H. Huang, M. Karczewicz, J. Li, B. Ray, K. Reuze, V. Serigin,
N. Shlyakhov, L. P. Van, H. Wang, Y. Zhang, and Z. Zhang, “Compres-
sion Efficiency Methods beyond VVC,” document JVET-U0100, 2021.

[4] Y. Li, J. Li, C. Lin, K. Zhang, L. Zhang, F. Galpin, T. Dumas, H. Wang,
M. Coban, J. Strom et al.,, “Designs and Implementations in Neural
Network-based Video Coding,” arXiv preprint arXiv:2309.05846, 2023.

[5] F. Galpin, R. Chang, and Y. e. a. Li, “JVET AHG report: NNVC software
development AhG14,” document JVET-AJO014, 2024.

[6] V. Seregin, J. Chen, R. Chernyak, F. Le Leannec, and K. Zhang, “JVET
AHG report: ECM software development (AHG6),” document JVET-
AH0006, 2024.

[71 S. Ma, L. Zhang, S. Wang, C. Jia, S. Wang, T. Huang, F. Wu, and
W. Gao, “Evolution of AVS video coding standards: twenty years
of innovation and development,” Science China Information Sciences,
vol. 65, no. 9, p. 192101, 2022.

[8] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S. Wang, “Image and
video compression with neural networks: A review,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 30, no. 6, pp. 1683—
1698, 2019.

[9] S. Ma, J. Gao, R. Wang, J. Chang, Q. Mao, Z. Huang, and C. Jia,
“Overview of intelligent video coding: from model-based to learning-
based approaches,” Visual Intelligence, vol. 1, no. 1, p. 15, 2023.

[10] T. Dumas, A. Roumy, and C. Guillemot, “Context-adaptive neural
network-based prediction for image compression,” IEEE Transactions
on Image Processing, vol. 29, pp. 679-693, 2019.

[11] M. G. Blanch, S. Blasi, A. Smeaton, N. E. O’Connor, and M. Mrak,
“Chroma Intra Prediction with Attention-based CNN Architectures,”
in 2020 IEEE International Conference on Image Processing (ICIP).
IEEE, 2020, pp. 783-787.

[12] P. Merkle, M. Winken, J. Pfaff, H. Schwarz, D. Marpe, and T. Wiegand,
“Spatio-Temporal Convolutional Neural Network for Enhanced Inter
Prediction in Video Coding,” IEEE Transactions on Image Processing,
vol. 33, pp. 4738-4752, 2024.

[13] L. Zhao, S. Wang, X. Zhang, S. Wang, S. Ma, and W. Gao, “Enhanced
Motion-Compensated Video Coding With Deep Virtual Reference Frame
Generation,” IEEE Transactions on Image Processing, vol. 28, no. 10,
pp. 4832-4844, 2019.

[14] Z.Huang, J. Sun, X. Guo, and M. Shang, “Adaptive Deep Reinforcement
Learning-Based In-Loop Filter for VVC,” IEEE Transactions on Image
Processing, vol. 30, pp. 5439-5451, 2021.

[15] C. Jia, S. Wang, X. Zhang, S. Wang, J. Liu, S. Pu, and S. Ma, “Content-
Aware Convolutional Neural Network for In-Loop Filtering in High
Efficiency Video Coding,” IEEE Transactions on Image Processing,
vol. 28, no. 7, pp. 3343-3356, 2019.

[16] Y. Li, L. Zhang, and K. Zhang, “IDAM: Iteratively trained deep in-loop
filter with adaptive model selection,” ACM Transactions on Multimedia
Computing Communications and Applications, vol. 19, no. 1, 2023.

[17] “ECM-14.0 software repository,” https://vcgit.hhi.fraunhofer.de/ecm/ECM/-
/tree/ECM-14.0.

[18] M. Coban, R.-L. Liao, and K. Naser, “Algorithm description of Enhanced
Compression Model 14 (ECM 14),” in JVET-AI2025, Sapporo, 2024.

[19] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image
super-resolution: dataset and study,” in Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition Workshops, 2017,
pp- 126-135.

[20] D. Ma, F. Zhang, and D. Bull, “BVI-DVC: a training database for deep
video compression,” IEEE Transactions on Multimedia, 2021.

[211 M. Karczewicz and Y. Ye, “Common Test Conditions and Evaluation
Procedures for Enhanced Compression Tool Testing,” document JVET-
AI2017, 2024.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[2

—



